Characterization of Upper Detour Monophonic Domination Number
نویسندگان
چکیده
منابع مشابه
Upper Edge Detour Monophonic Number of a Graph
For a connected graph G of order at least two, a path P is called a monophonic path if it is a chordless path. A longest x−y monophonic path is called an x − y detour monophonic path. A set S of vertices of G is an edge detour monophonic set of G if every edge of G lies on a detour monophonic path joining some pair of vertices in S. The edge detour monophonic number of G is the minimum cardinal...
متن کاملThe Connected Detour Monophonic Number of a Graph
For a connected graph G = (V,E) of order at least two, a chord of a path P is an edge joining two non-adjacent vertices of P . A path P is called a monophonic path if it is a chordless path. A longest x− y monophonic path is called an x− y detour monophonic path. A set S of vertices of G is a detour monophonic set of G if each vertex v of G lies on an x − y detour monophonic path, for some x an...
متن کاملEdge-to-vertex Detour Monophonic Number of a Graph
For a connected graph G = (V,E) of order at least three, the monophonic distance dm(u, v) is the length of a longest u− v monophonic path in G. For subsets A and B of V , the monophonic distance dm(A,B) is defined as dm(A,B) = min{dm(x, y) : x ∈ A, y ∈ B}. A u− v path of length dm(A,B) is called an A−B detour monophonic path joining the sets A,B ⊆ V, where u ∈ A and v ∈ B. A set S ⊆ E is called...
متن کاملDetour Monophonic Graphoidal Covering Number of Corona Product Graph of Some Standard Graphs with the Wheel
A chord of a path $P$ is an edge joining two non-adjacent vertices of $P$. A path $P$ is called a monophonic path if it is a chordless path. A longest $x-y$ monophonic path is called an $x-y$ detour monophonic path. A detour monophonic graphoidal cover of a graph $G$ is a collection $psi_{dm}$ of detour monophonic paths in $G$ such that every vertex of $G$ is an internal vertex of at most on...
متن کاملWeighted upper domination number
The cardinality of a maximum minimal dominating set of a graph is called its upper domination number. The problem of computing this number is generally NP-hard but can be solved in polynomial time in some restricted graph classes. In this work, we consider the complexity and approximability of the weighted version of the problem in two special graph classes: planar bipartite, split. We also pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cubo (Temuco)
سال: 2020
ISSN: 0719-0646
DOI: 10.4067/s0719-06462020000300315